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Chapter I   

General Introduction 

Hen eggs are considered to be the best source of protein, lipids, vitamins, and 

minerals. And after it was recognized that egg consumption does not cause high serum 

cholesterol, consumption of table eggs increased substantially. Moreover, continuous 

investigation of development of the polyfunctional properties of eggs has led to increase 

its usage as an ingredient in a variety of processed food (Sunwoo and Gujral, 2014). In 

fact, around 30% of hen eggs produced in the world are processed (Lomakina and 

Mikova, 2006), including three most well-known properties of egg as an ingredient: 

heat-induced coagulation of liquid eggs; foam formation of whipped egg white, as in 

meringues; and emulsion stabilized by egg yolk lipoprotein, as in mayonnaise (Davis 

and Reeves, 2002).  

1.1 Egg white proteins  

Egg white (EW) represents about 60% of the shell egg by weight, and mainly 

consists of water (88%) and protein (11%), with the remainder made up of 

carbohydrates, ash, and trace amounts of lipids (1%) (Li-Chan, Powrie et al.,1995). It is 

an excellent source of high quality proteins; over 24 different proteins have been 

identified and isolated from EW. Table1-1 lists selected properties of the major EW 

proteins. The composition of EW proteins closely matches human requirements for 

essential amino acids and has a very high digestibility. The bioavailability of egg protein 

is about 65% in raw egg and is up to 95% in cooked egg protein (Seuss-baum, 2007). 
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1.1.1 Ovalbumin 

Ovalbumin accounts for 54% of total EW proteins, making it the most abundant. It 

is also central to EW’s functional properties in food (Stadelman and Cotterill, 1994). 

Ovalbumin is also known as a phosphoglycoprotein with a molecular mass of 

about 45 kDa (Warner, 1954) with 386 amino acids, consisting of a single peptide chain 

molecule with a carbohydrate side chain. Amino acid composition of ovalbumin is 

unique compared with other proteins (Nisbet, Saundry et al., 1981). Ovalbumin does 

not have a classical N-terminal ladder sequence (Huntington and Stein, 2001), but has 

three sites of postsynthetic modification in addition to the N-terminal acetylated glycine 

(Narita and Ishii,1962) and the C-terminal proline , thus ovalbumin is also known as a 

glycoprotein. Ovalbumin contains four free sulfhydryl groups and one disulfide bridge 

(Cys74-Cys121), which are inaccessible in the native state (Doi, Koseki et al., 1987). 

Furthermore, as shown in Fig 1-1, ovalbumin is a highly structured globular protein. 

The secondary structure of ovalbumin has various motifs including α-helix (41%), 

β-sheet (34%), β-turns (12%), and random coils (13%)( Stein, Leslie et al., 1990; 

Huntington et al., 2001). When heated, ovalbumin undergoes a conformational change 

from its soluble, serpin structure into an insoluble all-β-sheet structure with exposed 

hydrophobic regions. This causes the protein to aggregate and cause the solidification 

associated with cooked EW (Hu and Du, 2000). 

1.1.2 Ovotransferrin  

Ovotransferrin is a monomeric glycoprotein consisting of 686 amino acids with a 

molecular weight of 76 kDa (Abeyrathne, Lee et al.., 2013) and a pI of 6.1, it is the 

second most abundant protein in EW, accounting for 12% - 13% of EW proteins. 

Moreover, ovotransferrin displays multiple activities. As with other transferrins, 

https://en.wikipedia.org/wiki/Conformational_change
https://en.wikipedia.org/wiki/%CE%92-sheet
https://en.wikipedia.org/wiki/Hydrophobic
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ovotransferrin has a strong iron-binding activity. This ability is thought to contribute to 

antimicrobial properties by depriving microorganisms of the iron necessary for their 

growth. For example, ovotransferrin has been found to suppress Pseudomonas sp., 

Escherichia coli, and Streptococcus mutans (Valenti, Antonini et al.., 1982). 

Considering its effect on the treatment of acute diarrhea, ovotransferrin has already been 

suggested and used as an infant formula ingredient (Del, Leone et al., 1985). Wu and 

Acero-Lopez (2012) also reported that ovotransferrin has an antioxidant effect on 

poultry meat by establishing a cellular redox environment. 
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Table 1-1: Major egg white proteins and selected properties (Mine, 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein Amount 

(%) 

Molecular 

Weight 

(kDa) 

pI Characteristics 

Ovalbumin 

Ovotransferrin 

Ovomucoid 

Lysozyme 

Ovomucin 

54 

12-13 

11 

3.4-3.5 

1.5-3.5 

45 

77.7 

28 

14.3 

220-270000 

4.5 

6.0 

4.1 

10.7 

4.5-5.0 

--- 

Binds iron and other metal ions 

Inhibits serine proteinases 

Lysis of bacterial cell walls 

Interacts with lysozyme 
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Fig.1-1: The 3-D crystal structure of ovalbumin with the α-helix reaction loop in yellow 

and main β-sheet A in red (Huntington et al., 2001). 
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1.1.3 Ovomucin 

Ovomucin is a sulphated EW glycoprotein which is composed of two subunits: 

α-ovomucin with a carbohydrate content of 15% and β-ovomucin with a carbohydrate 

content of 50%. Two forms of ovomucin exist in EW: insoluble and soluble. Soluble 

ovomucin is present both in thick and thin albumen, while insoluble ovomucin is found 

only in thick albumin (Hayakawa and Sato, 1977). 

Ovomucin is known to be critical for keeping the high quality and freshness of thick 

albumen (Wang, Wang et al., 2018). Liu, Oey et al.(2017a) suggested that retaining the 

ovomucin-depleted EW proteins in solution during processing has potential industry 

applications, for example, protein fortification of drinks with a minimal solution 

turbidity. Moreover, recently, researchers are paying more and more attention to 

ovomucin’s role as a health-promoting component. For example, Kodama and Kimura 

(1999) found that ovomucin inhibits colonization of Helicobacter pylori. 

Ovomucin has similar structures as mammalian mucins: it has a long linear protein 

chain with a randomly coiled structure, with carbohydrate chains attached to the protein 

core, in a “bottle brush’ configuration (Bansil and Turner, 2006). These structures 

suggested that ovomucin may possess protein-resistant p properties. This hypothesis 

was validated by Sun, Huang et al. (2018), who found that the strong electrostatic and 

steric repulsions between protein layers could be attributed primarily to the 

protein-resistant property of ovomucin. This finding demonstrates that ovomucin has 

antifouling potential with broad applications in the areas of food processing and 

biomedical implants. 

1.2 Enzymatic hydrolysis of food proteins 
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Enzymatic proteolysis is a process with mild reaction conditions and avoidance of 

undesirable byproduct. It has been extensively studied and described over the last 60 

years (Aspmo, Horn et al., 2005). Van der Plancken et al. (2003) studied the effect of 

heating in the temperature range of 50−92 °C on the susceptibility of ovalbumin and 

albumen solutions to enzymatic hydrolysis by a mixture of trypsin and α-chymotrypsin 

at 37 °C and pH 8.0. It was shown that heat treatment resulted in an increase in degree 

of hydrolysis after 10 min of enzymatic reaction for both ovalbumin and albumen. 

Generally speaking, hydrolysis of peptide bonds causes several changes in 

proteins:  

(1) the NH
3+

 and COO
-
 content of the protein increases, increasing its solubility, 

(2) the cleavage of peptide bonds, resulting in breakdown of proteins to peptides 

and amino acids, and   

(3) the globular structure of the protein is altered, exposing previously hidden 

hydrophobic groups (Can-peng, 2005).  

Thus enzymatically hydrolyzed proteins possess functional properties, such as low 

viscosity, increased whipping ability, and high solubility, which make them 

advantageous for use in many food products (Panyam and Kilara，1996). 

Not only the physical functionalities but also the bioactivity of protein hydrolysates 

have been studied. Dávalos et al. (2004) studied the antioxidant activity of peptides 

produced by enzymatic hydrolysis of crude EW with pepsin. Results showed that four 

peptides included in the protein sequence of ovalbumin possessed radical scavenging 

activity higher than that of Trolox. EW hydrolyzed by pepsin for 3 h was previously 

found to exhibit a strong angiotensin I–converting enzyme (ACE) inhibitory activity in 

vitro. Mine et al. (2004) obtained lysozyme hydrolysate by peptic digestion and 
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subsequent tryptic digestion, and found that proteolytic hydrolysis broadened the 

antimicrobial activity of lysozyme to gram-negative bacteria. Hydrolyzed egg yolks 

(EY) have been shown to inhibit ACE action in vitro and to suppress the development 

of hypertension in SHRs after oral administration for 12 weeks (Yoshii, Tachi et al.，

2001).  Enzymatic hydrolysis of protein is a promising method with potential to be 

widely used in the foods and pharmaceutical industries.  

1.3 Physical properties of egg white proteins 

EW protein is widely utilized as a functional ingredient in the food industry, 

because of its nutritional and functional properties. Functional properties such as 

foaming, gelling and emulsifying characteristics can give processed foods unique color, 

flavor, and texture characteristics. Multiple studies completed in recent decades, 

showing that many functional properties depend on the exposition of hydrophobic 

groups in the molecular surface and the interactions of these groups with air (foam), oil 

(emulsion) or other protein molecules (gels and coagulation) (Li-Chan, 1989).  

1.3.1 Foaming property.  

Protein molecules act as hydrophilic and hydrophobic groups. The hydrophilic 

groups are arranged towards the water phase and the hydrophobic groups towards the 

air phase. During the whipping process air comes into the solution to form bubbles and 

the hydrophobic regions facilitate adsorption at the interface. Egg albumen has excellent 

food foaming properties due to its rapidly adsorb on the air-liquid interface during 

whipping or bubbling and its ability to form a cohesive viscoelastic film by way of 

intermolecular interactions (Mine, 1995). Having a mixture of proteins allows EW to 

perform well in foams because each component of EW carries out a different function 
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(Stadelman and Cotterill，1994), even though each component alone has little or no 

foaming capacity (Johnson and Zabik, 1981).  

Lomakina and Mikova (2006) found that this foaming capacity is significantly 

affected by protein interactions with ovomucin and lysozyme, while ovomucoid, 

ovotransferrin and ovalbumin had smaller effects. In food processing, pasteurization of 

liquid EW near 60°C weakens the foaming capacity of EW liquid; in fact, its foaming 

property begins to be damaged at temperature as low as 54°C (Cunningham,1965). 

The quality of EW is another important factor which affects its foaming capacity. 

Precisely, the whipping volume of the whole EW has been found to increase slightly 

with the increasing age of the hen, and storage of egg also has a moderately positive 

effect on whipping volume (Silversides and Budgell, 2004). This effect was previously 

studied by Hatta et al.(1996), who found that thick egg albumen proportion changes 

from 50% in fresh hen eggs to 30% after 12 days storage at 25°C, resulting in a 

decrease in the viscosity of EW, which may explain the influence of the freshness of 

EW on its foaming capacity. Moreover, Van der Plancken et al. (2007) studied the effect 

of moisture content during dry-heating at 80°C on the foaming properties of 

freeze-dried EW, and found that the foaming capacity of dried EW increased with 

longer dry-heating time. A high moisture content of the dried EW contributed to an 

improvement of foaming capacity rapidly. 

1.3.2 Emulsifying property.  

Emulsification is the most important process in the manufacturing of many 

formulated foods. Emulsion is a heterogeneous system of one liquid dispersed 

throughout another in the form of droplets usually exceeding 0.1 µm in diameter. Food 

emulsion can be categorized as oil in water (O/W) or water in oil (W/O). The former 
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emulsion commonly exhibits a creamy texture, while the latter emulsion has greasy 

textural properties. Due to their capacity to lower the interfacial tension between 

hydrophobic and hydrophilic components, proteins play a role as effective 

surface-active agents. Thus, they participate in the formation of O/W and W/O 

emulsions and stabilize the emulsions that are formed.  

Emulsions stabilized by proteins are of great interest. The emulsifying property of 

proteins basically depend on two effects: (1) a substantial decrease in the interfacial 

tension due to the adsorption of the protein at the oil-water interface and (2) the 

electrostatic, structural and mechanical energy barrier to particle association and phase 

separation, opposing destabilization processes (Izmailova, Yampolskaya et al., 1999). 

The emulsifying capacity of whole eggs, EY and even EW plays a role in baking and 

other applications. EW emulsifies due to its albumin protein component, while for EY it 

is its lipoprotein content. Compared with EY, the emulsifying property of EW is low, 

hence, in order to broaden the application of EW, many studies have investigated how to 

improve the emulsifying property of EW. Kato et al. (1989) found that after heating at 

80°C with 7.5% moisture content for 7 days, the emulsifying properties of EW powder 

increased with longer heating time, correlating with surface hydrophobicity. Li, Wang et 

al.(2018) indicated that the foaming/emulsifying properties of EW/EY proteins can be 

manipulated by altering physicochemical characteristics such as charge, surface tension 

and particle size.  

1.3.3 Gelling property.  

Gel is an intermediate between solid and liquid, with both flow and elastic 

characteristics. Gelation is an important commercial process given the number of  

cooked consumer products, such as desserts, puddings, reformulated meat products, tofu, 
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and surimi, that rely on protein coagulation, especially the coagulation of egg proteins 

(Alleoni, 2006). Proteins make gels through coordinate polymerization of molecules, 

providing a three-dimensional network, and this process occurs by the transformation of 

the viscous liquid into a viscous-elastic matrix. Both EW and EY have the capacity to 

form gels upon heating. Gel formation is a two-step process of denaturation followed by 

aggregation of denatured proteins, as shown in Fig.1-2. In the first step, changes in the 

conformation (usually induced by heating) or partial denaturation of the protein 

molecule occur. With denaturation, the dispersion velocity increases as a result of 

increasing molecular dimensions caused by unfolding of the protein molecule (Ferry 

1948). In the second step, a gradual association or molecule aggregations of denatured 

proteins leads to an exponential increase in viscosity, and to the formation of a 

three-dimensional network (Hermaneson, 1979; Phillips et al., 1994). 

  Because of transportation and shelf-life requirements in the egg industry, egg 

liquid is usually dried and conserved as egg powder, which can withstand high 

temperatures that allow for the destruction of all pathogens. Kato et al. (1990) found 

that gel strength of dried EW greatly increased by heating in the dry state at 80°C with 

initiating the Maillard reaction. In France, two types of treatments are used to improve 

functional properties (whipping and gelling) of dried EW: standard storage at 67°C for 

about 15 days and storage at 75 to 80°C for 15 days (Baron, Nau et al., 2003). Moreover, 

Matsudomi et al. (2002) improved gelling properties of dried EW by modification with 

galactomannan through the Maillard reaction.  

1.4 Bioactivity of egg white protein. 

Egg proteins are nutritionally complete with a good balance of the essential amino 
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acids that are needed for building and repairing cells in muscles and other body tissues. 

Enzymatic hydrolysis of proteins releases bioactive peptides and different enzymes have 

different abilities to release such bioactive fractions (Mine, 2007). Research on egg 

protein-derived bioactive peptides has progressed during recent decades as shown in 

Table 1-2. These bioactive peptides are mainly derived from ovalbumin and 

ovotransferrin which are the two most abundant components of EW proteins. These 

results also broaden the consumption of eggs, giving an innovative way for the egg 

industry to update conventional egg products to high-value added products. 
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Fig.1-2: Two-step process of gel formation of proteins. 
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Table 1-2. Examples of bioactive egg white-derived peptides. 

(Eckert et al., 2013; Liu et al., 2017b) 

 

Encrypting 

proteins 

Name/remarks/sequence Effect Reference 

Ovalbumin 

 

AHK, VHH, VHHANEN Antioxidant (Takusyoku, 1991; Dávalos, 

Miguel et al., 2004) 

Ovotransferrin 

 

Tyr-Ala-Glu-Glu-Arg-Tyr-

Pro-Ile-Leu 

 

ACE inhibitory and 

antioxidant 

 

(Majumder and Wu, 2011) 

(Iwaniak and Minkiewicz 

2007) 

Ile‐Arg‐Trp, Ile‐Gln‐Trp, 

Leu‐Lys‐Pro 

 

ACE inhibitory, 

Ameliorates Insulin 

Resistance 

(Son et al., 2017) 

OTAP-92 

 

Antimicrobial activities 

 

(Ibrahim et al., 2000) 

Not specified Anticancer (Lee et al., 2017) 
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1.5 Shrinkage of meat  

Cooking of meat is essential for sterilizing foodborne pathogens, assuring 

microbial safety and achieving meat quality (Pathare and Roskilly, 2016). Meat 

shrinkage and cooking loss have been thought to be the poor meat quality indication by 

consumers (Barbera and Tassone, 2006). From a nutritional perspective, cooking loss 

also brings loss of soluble proteins, vitamins and other micronutrients (Yarmand et al., 

2013). During cooking, the distinctive meat proteins are heat denatured, resulting in 

destruction of cell membranes, shrinkage of meat fibers, and aggregation and gel 

formation of myofibrillar and sarcoplasmic proteins, as well as the shrinkage and 

solubilization of the connective tissue (Tornberg, 2005; Pathare and Roskilly, 2016).  

All meat will shrink in size and weight during cooking. The extent of shrinkage 

depends on the fat and moisture content of meat, the cooking temperature, and the 

cooking time. Basically, the higher the cooking temperature, the greater the shrinkage; 

overcooking draws out more fat and juices from ground beef, resulting in a dry, less 

tasty product. In order to avoid or decrease shrinkage and cooking loss of meat, many 

studies have been conducted. Heating temperature has been shown to affect the texture 

of meat, with a low cooking temperature yielding a tender product with lower cooking 

losses (Marshall, Wood et al., 1960; Penfield and Meyer, 1975). Moreover, cooking 

method was also shown to have an effect on the physical properties and cooking loss of 

meat. Domínguez, Gómez et al. (2014) proved that microwave cooking resulted in the 

highest cooking loss of foal meat comparing with other cooking methods (roasting, 

grilling and frying).  

 In addition to cooking method, different treatments have been studied to enhance 
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the appearance and flavor of meat products. Polyphosphates are known to change pH 

value, increase the amount of bound water, decrease weight losses from cooking, 

improve texture and sensory properties (tenderness, juiciness, color and flavor), extend 

shelf-life, etc. Therefore, polyphosphates have been widely used in meat processing 

industry (Long, Gál et al., 2011). However, as cardiovascular morbidity and mortality 

have been associated with high intake of phosphate additives, the use of polyphosphates 

faced to criticism (Ritz et al., 2012; Glorieux et al., 2017).  

Proteins are very important for sensory properties and quality of meat products. 

Omana et al. (2012) thought that lean meat content (protein content) should be 

sufficient to stabilize emulsion and gel formation during heating. Cereal and legume 

proteins can be added to meat products to help reduce formulation costs and cooking 

loss, to improve nutritional value, and to improve in emulsifying property (Correia and 

Mittal, 2000). Among all the cereal and legume proteins, soybeans are the most 

commonly used in processed meat products due to their low cost and functional 

properties (Omana et al., 2012). Soy protein isolate (SPI) as a binder is also widely used 

in processed meat, resulting in reduced costs and water loss (Homco-Ryan et al., 2003). 

However, the U.S. Department of Agriculture set a limit of 3.5% for cereal-based 

materials incorporated in the meat formulations, and SPI is limited to 2% (Homco-Ryan 

et al., 2003).  

 In addition to cereal and legume protein, animal protein like EW is also used in 

cooked sausages such as frankfurters, due to its ability to form a stable and 

heat-irreversible gel, which positively contributes to the firmness of low-cost emulsified 

sausages. The addition rate of EW varies widely; high inclusion levels result in an egg 

flavor within the finished product (Keeton and Osburn, 2001).   
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1.6 Objectives of the present study 

EW has been widely used in the food industries because of its nutritional value and 

functional properties, such as foaming and gelling. Based on these properties, many 

foods with different textures have been developed in the past years. Enzymatic 

hydrolysis has proved to be a moderate and environmentally friendly method to modify 

protein characteristics to improve the physical properties of proteins. As well, several 

bioactivities like antioxidative capacity and antimicrobial activity could be reserved in 

the hydrolysates (certain peptides).  

 Of the physical properties of EW, the most applied in the food industry are gelling 

and foaming capacity. Even as a protein with both hydrophilic and hydrophobic sites, 

however, EW protein shows a quite weak emulsifying property which limits its 

application in both food and cosmetic industries. In our previous study, the emulsifying 

activity and emulsifying stability were ameliorated by partial hydrolysis by a 

thermo-stable enzyme –Protin NY100
®
, Thermoase PC10F

®
, Protease M

®
, combined 

with a heat treatment at 90°C. Both the enzymatic hydrolysis and heat treatment were 

proved to be indispensable to obtain an excellent emulsifying property which could 

even be comparable to that of EY.  

In our present study, we tested another two kinds of enzymes, to test their potential 

and possibilities to be used to improve properties of EW.  

Thus, the objectives of this research are:  

1 )  to examine characteristics and functional properties of EW hydrolysates by 

using three different enzymes.  

2 )  to study the effect of hydrolysis on an antioxidative capacity of EW 
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hydrolysates, and its potential to suppress color change in pork meat during 

storage.  

3 )  to investigate cooking loss and shrinkage rate of pork meat slices soaked in 

different EW hydrolysates solutions. 

 Chapter II describes how EW proteins were hydrolyzed by three enzymes-  

Protin NY100
®
, Thermoase PC10F

®
, and Protease M

®
, followed by heat treatment at 

90°C, and characteristics and functional properties of these obtained hEWs were 

examined, including solubility, water-holding capacity (WHC), oil-binding capacity 

(OBC) and emulsifying capacity in relation to the enzyme types used in the hydrolysis 

process. Furthermore, in Chapter II, the antioxidative capacity of hEWs were also 

studied. To study EW’s potential to be used as a natural preservative in meat processing, 

pork meat slices were soaked separately in each hEWs solution. The effect of hEW on 

suppressing color change and myoglobin proportions of meat slices was also studied. 

Meat shrinkage and cooking loss are also key factors of meat quality for consumers. In 

the last part of this project, meat shrinkage and cooking loss were evaluated for pork 

meat slices treated by soaking in each hEWs solution. In order to understand better, the 

microstructures of these treated meat slices were also examined.  
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Chapter II   

Properties of partially hydrolyzed egg white 

2.1 Introduction 

Egg white (EW) is a significant protein source of dietary protein, accounting for 

about 58% of the entire mass of an egg, with a protein content of about 10% 

(Abeyrathne et al., 2013; Kovacs-Nolan et al., 2005). It is also known as a desirable 

ingredient for many foods such as bakery goods, meringues, and meat products in which 

it is mainly used because of its excellent gelling and foaming properties (Mariotti et al., 

2012). However, for some applications, it could be useful to improve and to diversify 

EW properties. In particular, increasing the emulsifying properties of EW could be an 

innovative way to obtain a pure protein emulsifier, which is a fat-free functional 

ingredient compatible with “light food” claims.  

   Enzymatic modifications are efficient for modifying protein functionality 

(Panyam et al., 1996). Especially, proteolysis has been suggested as an efficient way to 

improve functional properties by (Lqari et al., 2005). These authors showed that lupin 

protein and α-conglutin hydrolyzed by alkaline protease (alcalase) had better 

emulsifying activity (EA) than native lupin protein and α-conglutin, respectively. 

Although the emulsifying stability (ES) of hydrolysates of lupin protein and α-conglutin 

decreased relative to the native proteins, lupin protein hydrolysates were still thought to 

be potential to be used as ingredients in emulsion-based food formulations such as salad 

dressing and mayonnaise. Furthermore, thermal treatments that are usually used for 

inactivating the enzymes have also been shown to affect protein structure (Sanchez and 
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Fremont , 2003), which should be related to protein functionality. 

   In the present study, physical properties of partially hydrolyzed EW protein by 

partial hydrolysis were measured, including emulsifying properties, water-binding 

capacities and oil-binding capacity.  

2.2 Materials and Methods 

2.2.1 Preparation of egg white hydrolysates.  

Three kinds of enzymes: Protin NY100
®
, Thermoase PC10F

®
, Protease M

®
, which 

were provided by Amano Enzyme Inc. (Japan) were used in this study, EW hydrolysates 

obtained using these three enzymes were named: PNY, T and PM, respectively. Optimal 

pH and temperature for each enzyme were listed in Table 2-1.  

Hen eggs were obtained from a local supermarket (Kyoto, Japan) and were 

manually broken and separated yolk from EW. EW was mixed using a hand mixer 

(National MK-210, Japan) at a rotational speed of 540 rpm for 3 s, then filtered by 

passing through a stainless mesh (sieve size 0.60 mm), any foam was removed. The pH 

of EW was adjusted to each optimal working pH as shown in Table 2-1 with 10% (w/v) 

citric acid solution before using for the experiment. 

The enzyme was added at a concentration of 0.4% (w/w) after EW being warmed 

up to 50°C. Enzymatic treatments were conducted as follows: 10 min at 50°C, then 

adjusted to its corresponding optimal working condition, and maintained for 30 min 

before inactivation. Inactivation of the enzyme was achieved by holding the resulting 

hydrolysates at 90°C for 8 min, before homogenization by a mechanical homogenizer 

(IKA T18 basic, Germany) at Dial 5 (15,000 rpm) for 60 s. To ensure enzyme was 

completely inactivated, x-ray films (Fuji Film, Japan) were used. The surface of x-ray 
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film is covered with thin gelatin film, which is hydrolyzed by the possible remained 

active enzyme, leading to the appearance of transparency of films. 

EW hydrolysates were then freeze-dried (FreeZone Plus 12 Liter Cascade Console 

Freeze Dry System, Labconco, Japan) and stored as powder at -30°C in a Biomedical 

Freezer (MDF-U539-PJ, Panasonic, Japan). 

2.2.2 Reference emulsifying peptide. 

Runpep
®
 (Pharma Foods International Co. Ltd, Japan) is a mixture of EW peptides 

with molecular weight lower than 10 kDa (as reported in the product description), it was 

used as a reference for emulsifying properties. Runpep (80% proteins) was dissolved in 

distilled water at a concentration of 100 mg (protein) / mL as a reference sample, which 

was then stored at 4°C until use. 

2.2.3 Determination of total protein content.   

Determination of total protein content in hEW, nEW, Runpep, and EY was 

conducted by modified Lowry method (Lowry et al., 1951; Markwell et al., 1978). 

2.2.4 Determination of hydrolysis degree. 

EW hydrolysate powder was dissolved in distilled water at a concentration of 100 

mg/mL before determination of the degree of hydrolysis (DH). Free amino groups were 

quantified using the o-phthalaldehyde (OPA) micromethod described by Church et al., 

(1983) and with modifications by Darrouzet-Nardi et al., (2013). 

OPA reagent was mixed as follows: 25 mg OPA were dissolved in 2.5 mL 

methanol; then 2.5 mL SDS 20% and 50 μL β-mercaptoethanol were added, and the 

solution was filled up to 100 mL with 20 mM potassium tetraborate. The reagent was 

covered with aluminium foil to protect from light.100 μL OPA reagent were thoroughly 

mixed with 50 μL hydrolysate samples and incubated at room temperature for 10 min 
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before reading the absorbance at 340 nm by a spectrophotometer (Infinite M200, 

TECAN). A standard curve was previously prepared using methionine solutions 

concentration from 9.4 to 53.6 μg / mL). 

   Total acidic hydrolysate of EW was used as a reference for complete hydrolysis (DH 

= 100%). It was prepared by adding 2 mL 6 N HCl to 2 mg EW protein powder before 

the mixture was heated at 110°C for 18 h. After then, vacuum concentration was used in  

order to remove the remaining HCl in the hydrolysate, and the hydrolysate volume was 

adjusted to the original EW sample volume with distilled water. 

For each enzymatic hydrolysate, DH was calculated as follows: 

  

 

Where Lt is the amount of liberated free NH2 at time t min, L0 is the amount of the free 

NH2 at 0 min, and Ltot is the maximum amount of the free NH2 obtained after complete 

acidic hydrolysis. 

2.2.5 Surface hydrophobicity.  

Samples were diluted with phosphate buffer (0.01 M, pH 7.0) before centrifuging 

at 10,000g for 10 min, and supernatant of each sample was stored at 4°C for further 

analysis. Protein surface hydrophobicity (H0) was measured using fluorescence probe 

1-anilinonaphthalene-8 sulfonic acid (ANS). ANS solution (45 μl, 8 mM) was added to 

3 ml sample solution. ANS fluorescence intensity was measured at 470 nm with 

excitation at 390 nm. Excitation and emission slits were 2.5 nm. The slope of the plots 

of fluorescence intensity versus protein concentration (0, 0.05, 0.1, 0.15, 0.25 mg/ml) 

was calculated by linear regression and used as a measurement of H0.   
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Table 2-1 Working condition of enzymes. 

 

Enzyme 

name 

Proteolytic activity of 

enzyme 

Optimal  

Temperature and pH 

Enzyme 

Inactivation 

temperature /T°C 

Protin NY100
®
 

ThermoasePC10F
®

 

Protease M
®
 

900,000 U/g 

700,000 U/g 

40,000 U/g 

50°C; pH 7.0 

65°C; pH 7.5 

50°C; pH 6.0 

65-70°C 

85-90°C 

60-70°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

2.2.6 Determination of emulsifying properties. 

Emulsifying properties were measured according to the turbidimetric method 

developed by Pearce et al. (1978) with slight modifications. Briefly, colza oil, hEW (or 

EY, Runpep, nEW) and water were homogenized with a weight ratio of 3:2:1 by a 

mechanical dispenser (Polytron PT-MR2100, Switzerland) at 25,000 rpm for 1 min, 

then 200 μl of emulsion was pipetted from the bottom of the container immediately (T0) 

and 2 hours (T2h) after homogenization. Each aliquot was diluted 1,000 times with SDS 

solution (0.1%, w/v). Absorbance of these diluted emulsions (A0 and A2h, respectively) 

were measured at 500 nm by a spectrophotometer (Unico S1205, USA). A0 indicated 

emulsifying activity (EA). Emulsifying stability (ES) was calculated as follows:  

ES = A0 / (A0－A2h ) 

2.2.7 Particle size measurement.  

hEW (PNY, T and PM) or native egg white (NEw) was diluted to the final protein 

concentration of 2% (w/v) with denionized water. Then the protein solutions were 

mixed with colza oil at a volume ratio of 9:1, followed by pre-homogenizing for 2 min 

at 13,000 rpm using a homogenizer (Polytron PT-MR2100, Switzeland) equipped with a 

5 mm diameter head. The resulting emulsions were sealed and stored at 4°C until 

analysis. Droplet size distribution profiles of various freshly prepared emulsions were 

obtained with a laser diffraction particle size analyzer (SALD-2200, Shimadzu, Japan). 

Droplet size measurements were reported as the volume-average droplet size, d3, 2 = 

(∑nidi
3
 / nidi

2
), where ni is the number of droplets with diameter di (Chang, Niu et al., 

2016).  All determinations were conducted on individual sample in triplicates. 

2.2.8 SDS-PAGE.  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 
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performed according to Laemmli (1970). Pre-cast gels of 5-20% acrylamide (C-520L, 

Atto Corporation, Tokyo, Japan) and protein ladder (WSE-7020, Atto Corporation, 

Tokyo, Japan) with the molecular weight from 10 kDa to 245 kDa were used.  

2.2.9 Solubility.  

Solubility was determined using method described by Snyder and Kwon (1987) 

with slight modifications. An aqueous solution (1.0%, w/v) of samples in deionized 

water was stirred magnetically for 30 min. Then it was centrifuged at 13,500 rpm for 30 

min at 4°C (CFRXⅡ, Hitachi, Japan). After an appropriate dilution with deionized water, 

protein content of the supernatant was determined by the method of Markwell et al. 

(1978). The soluble protein percentage was expressed as (protein content of the 

supernatant) / (sample protein content) ×100. 

2.2.10 Water-holding capacity.  

Water-holding capacity (WHC) was determined as described by D'appolonia 

(1977). Samples (1 g) added to centrifuge tubes (15 mL) containing distilled water (9 

mL). Tubes were shaken at room temperature for 2 h. Samples were then centrifuged at 

9,000 rpm (CFRXⅡ, Hitachi, Japan) for 30 min at 20°C. Then tubes were inverted and 

allowed to drain for 10 min, supernatant was decanted, drained weight was determined. 

WHC was determined as percent of water retention. 

2.2.11 Oil-binding capacity.  

Oil-binding capacity (OBC) was determined using a modified method of 

Homco-Ryan et al. (2003) and Seguchi (1985). Sample (0.3 g) was combined with colza 

oil (3 mL) in a 15-mL plastic test tube. Tubes were shaken vigorously by a mechanical 

shaker for 1 min before standing at room temperature for 1h. Then samples were 

centrifuged at 3,500×g for 25 min at 20°C. Tubes were inverted and allowed to drain for 
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30 min, drained weight was determined. OBC was calculated as: OBC = oil bound (g) / 

sample (g) × 100.  

2.2.12 Statistics analysis.  

All experiments were carried out in triplicates. The data were subjected to 

multifactor analysis of variance (ANOVA), followed by the Least Significant Difference 

(LSD) test to determine the significant difference between samples at p < 0.05 using the 

software SPSS V.16. 

2.3 Results and Discussion 

2.3.1 Degree of hydrolysis.  

When analyzed by SDS-PAGE, EW proteins presented a wide range of molecular 

masses and concentrations. The main EW proteins: ovalbumin (44.5 kDa), 

ovotransferrin (77.7 kDa), ovomucoid (28 kDa) and lysozyme (14.3 kDa), constitute 54, 

12, 11 and 3.4% of the total EW proteins, respectively (Abeyrathne, Lee et al. 2013). As 

observed in Fig.2-1, Lane I-6 represented band of NEw, the bands for ovotransferrin 

(around 75 kDa) and lysozyme (around 15 kDa) could be observed easily, but the bands 

for ovalbumin and ovomucoid were connected to each other. Unlike NEw, the band 

around 75 kDa for sample PNY, T and PM disappeared completely, which suggested 

that ovotransferrin could be hydrolyzed easier by Protin NY100
®
, Thermoase PC10F

®
 

as well as Protease M
®

 than ovalbumin. Moreover, Peptide S was hydrolyzed the most, 

with a DH of 26.0% (Fig.2-2) and an average molecular weight less than 10 kDa shown 

in Fig.2-1 I. After passing through 0.45 µm of the filter, most bands between 35 kDa to 

45 kDa were still visible. Most bands for EW hydrolysates T disappeared after filtration, 

that means the percentage of water-soluble protein in these three samples are low, which 

http://www.statisticshowto.com/how-to-calculate-the-least-significant-difference-lsd/
http://www.statisticshowto.com/how-to-calculate-the-least-significant-difference-lsd/
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is in accordance with the result of solubility measurement shown in Fig.2-2. 

2.3.2 Solubility. 

In this study, pork meat slices were planned to be soaked in the hEW solutions thus, 

solubility of hEW was one of important factors to evaluate its possible application on 

meat slices. Degradation of proteins by a proteolytic enzyme was widely used to 

increase the solubility and retain the nutritional values of proteins. According to Table.2, 

solubility did not differ between NEw and Peptide S, solubility of hEW (PNY, T and 

PM) decreased compared with NEw. This inconsistence may have occurred due to high 

temperature (90°C) used for inactivation of enzymes during the preparation of hEW, 

which led to the appearance of some insoluble aggregates, while freeze drying didn't not 

affect the high solubility of NEw. The order of solubility of hEW was as follows: PNY > 

PM > T.  

2.3.3 Surface hydrophobicity.  

Surface hydrophobicity was reported to have great significance in elucidating the 

protein functions (Kato and Nakai, 1980). Fig.2-3 shows the fluorescence intensity of 

the EW hydrolysates prepared by various enzymes and NEw solutions, as the 

wavelength changes. It was observed that the solution prepared by T showed the highest 

fluorescence intensity compared to other samples. Result of surface hydrophobicity was 

shown in Fig.2-4. Except for small peptide S, solutions prepared by hEW microparticles 

showed an increase of surface hydrophobicity compared to solution prepared by NEw, 

this result was in accordance with our former study (Wang et al., 2018), partial 

hydrolysis contributed to an increase of surface hydrophobicity. High surface 

hydrophobicity indicating a better molecule flexibility and higher expansion degree of 
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proteins, thus resulted in a better adsorption capacity onto oil/water interface (Chang et 

al., 2016a; Chang et al., 2016b). 

2.3.4 Average droplet size.  

The average droplet size, difference between the maximum and minimum diameter 

of droplets of the dispersed phase and the degree of their dispersion are considered as 

the significant parameters characterizing a given emulsion (Dajnowiec et al., 2016). The 

droplet size distribution influences the properties of emulsion in aspects such as 

degradation rates, long-term stability, texture and optical appearance (Fernandez et al., 

2004; Jurado et al., 2007).  

In the current study, oil droplet particle size was used to evaluate the emulsifying 

properties of hEWs by using different enzymes. Mean diameters of oil droplets (d3,2) in 

the emulsions stabilized by different hEWs were shown in Table 2-2. The largest 

particle size was found in Peptide S, referring to lower emulsifying property of Peptide 

S. The average particle sizes of hEW samples (PNY, T, PM) were observed less than 

that of NEw and Peptide S. It was reported that smaller particle size allowed the protein 

to coat the fat or water droplets more efficiently as there were more particles available 

to form a monolayer (Homco-Ryan et al., 2003).  

Droplet size distribution curves were also shown in Fig.2-5. According to the shape 

of curves, EY and Runpep exhibited single peaked droplet size distribution, the amount 

of small droplets size (between 0.1 and 1.0 µm) was found to be the most in EY. The 

smallest and the largest particle size were found in EY and Runpep respectively, 

referring to the low emulsifying property of Runpep compared to EY. This result is in 

accordance with that obtained by the former turbidimetric method. Regarding hEWs, 
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shape of droplet size distribution curves became complicated than EY and Runpep, a 

peak at the point of size less than 10 µm was found for all the hEW samples.  

 

2.3.5 Emulsifying properties. 

The ability of a protein to aid the formation of an emulsion is related to its ability to 

attach to and stabilize the oil-water interface, the more the interfacial area that can be 

coated by the available protein, EA should be higher (Day et al., 2009). Due to the 

formation of smaller droplets during emulsification, more light scattering resulted in 

higher turbidity, and the turbidity increase indicates an increase in EA (Van Vliet et al., 

2002). Similarly, the maintenance of a high turbidity value during the storage of an 

emulsion indicates high ES, while a turbidity decrease indicates instability of the 

emulsion.  

   Turbidity measurements of emulsions stabilized by different hydrolysates were 

performed immediately after emulsification (T0) and after 2h of storage (T2h). 

Absorbance (500 nm) observed at T0 was used as an index of EA, ES was calculated by 

using the equation in the method. Results of EA and ES were shown in Fig. 2-6: among 

all the hydrolysates, EW hydrolyzed by Thermoase resulted in the best EA and ES, 

which was comparable to that of EY and much higher than that of NEw. It is noticeable 

that, regarding EA, almost all the hEW samples were better than NEw, which  that 

partially hydrolysis of egg white contributed to the improvement of EA and ES. Peptide 

S showed a similar EA with that of PNY and PM, however, ES of Peptide S was such a 

small value (close to 1), that means turbidity of emulsions after 2h became almost 0, 

emulsions separated completely. This could suggest that the higher emulsifying 

properties are obtained for moderate proteolysis. And the highly hydrolyzed products- 
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like Peptide S offered an excellent EA but low ES.  

It is well known that protein hydrolysates can be attached to the oil-water interface 

more efficiently compared to proteins, because of molecular size. However, protein 

hydrolysates are more difficult to form a network structure due to fewer hydrophobic 

binding sites (Pokora et al., 2013), resulting in a relative worse ES of protein 

hydrolysates. Because the complex, folded and coiled protein molecules were cut down 

into separate units by the previous hydrolysis treatment, the hydrolysate after heating at 

90°C (enzyme inactivation temperature) was unable to form a well ordered tertiary 

network or matrix, resulting in a creamy texture, without causing any gelling or 

coagulation even heated at 90°C.   

2.3.6 Water-holding capacity and oil-binding capacity. 

Results of WHC and OBC were shown in Table 2-2. Significant WHC difference 

existed among hEW (PNY, T and PM), sample T was able to retain nearly 90% of the 

water that it absorbed. WHC of NEw and Peptide S were fairly low, almost 0, which 

means that NEw and Peptide S could not retain any water that they absorbed. Regarding 

OBC, all samples were quite low. Furthermore, OBC decreased after hydrolysis. 

2.4 Conclusion 

The effects of enzyme kind on the degree of hydrolysis, surface hydrophobicity, 

and emulsifying properties of EW proteins were evaluated in this part. By using three 

kinds of enzymes, we could prepare egg white hydrolysates that were all more efficient 

than native egg white considering emulsifying activity and stability. The optimal 

enzyme to obtain best emulsifying properties was Thermoase 10F, which is a 

thermo-stable enzyme. Higher hydrolysis (in the case of Peptide S) resulted in peptides 
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which are with an excellent emulsifying activity but low emulsifying stability. Surface 

hydrophobicity was found to be an important factor related to the emulsifying activity 

and stability of hydrolyzed egg white proteins. Moreover, solubility did not differ 

between NEw and Peptide S, solubility of hEW (PNY, T and PM) decreased compared 

with NEw. Hydrolysate-T was able to retain nearly 90% of the water that it absorbed, 

but regarding OBC, all samples were quite low. 
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Fig.2-1 SDS-PAGE for various egg white hydrolysates and native egg white. 

I: mixture of water-soluble fraction and water-insoluble fraction. II: water-insoluble 

fraction. Lane 1: molecular size markers. Lane 2: egg white hydrolyzed by Protin 

NY100
®
; Lane 3: egg white hydrolyzed by Thermoase PC10F

®
; Lane 4: egg white 

hydrolyzed by Protease M
®
; Lane 5: highly hydrolyzed commercial egg white peptides; 

Lane 6: native egg white.  
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Fig.2-2. Solubility and degree of hydrolysis (DH) of egg white hydrolysates. Means 

within column with no common superscript differ significantly (p < 0.05). 
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Fig.2-3. Fluorescence emission spectra of ANS in the presence of egg white 

hydrolysates and native egg white.  
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Fig.2-4. Surface hydrophobicity (H0) of hydrolyzed EW samples. The same letters 

denote the lack of significant differences (p < 0.05). 
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Fig.2-5.  Particle size distribution of emulsion containing 10% oil and different 

emulsifiers. 
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Fig. 2-6. Comparison of emulsifying activity (EA) and emulsifying stability (ES). 
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Table 2-2 Mean diameter of oil droplets (d3,2) in the emulsions stabilized by different 

egg white hydrolysates, water-holding capacity (WHC) and oil-binding capacity (OBC) 

in different egg white hydrolysates and native egg white. 

 

 

Means ± SD are shown (n=3). In each tested parameter, different superscript letters 

indicate significant differences between means in the same row (p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

     PNY T PM Peptide S NEw 

d3,2 42.5± 0.50
c
 27.3± 0.40

e
 34.1±0.80

d
 116.8 ±1.12

a
 106 ±0.30

b
 

WHC 14.67 ±3.21
c
 89.28 ±8.60

a
 77.63 ±10.68

b
 0.02 ±0.02

d
 0.01 ±0.01

d
 

OBC 4.15 ±0.12
b
 2.69 ±0.27

c
 4.51 ±0.09

b
 5.60 ±0.72

b
 8.98 ±0.61

a
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Chapter III   

Effect of egg white hydrolysates on color stability of pork meat slices 

3.1 Introduction 

Lipid oxidation is of great concern to the food industry, because it is a major cause 

of meat food deterioration, affecting color, flavor, texture and nutritional value 

(Mansour and Khalil, 2000). It was reported that 74% of consumers regarded that meat 

color, accelerated by lipid oxidation, as one of the major quality parameters affecting 

their decisions to purchase meat, because they viewed bright red color as a sign of 

freshness (Lynch et al., 1986; Ismail et al., 2009). It is known that the red color of meat 

depends on the concentration of myoglobin and its derivatives (Hood, 1980; Faustman 

et al., 1992). Metmyoglobin is the state when the iron has oxidized and appears tan or 

brown in color.  

Application of antioxidants is the best strategy to prevent oxidation reactions in 

food (Shahidi, 2000). Antioxidants are added to different meat products for prevention 

of lipid oxidation, retarded development of off-flavors and improved color stability, 

including BHA (butylated hydroxyanisole), BHT (butylated hydroxytoluene), PG 

(propyl gallate) and TBHQ (tert-butyl hydro qui-none) (Kumar et al., 2015). But due to 

adverse attention received by synthetic antioxidants, and also due to the worldwide 

trend to avoid or minimize use of artificial (synthetic) food additives, many researchers 

around the world have been evaluating the potential of natural antioxidants for 

preventing lipid oxidation in food products (Gahruie et al., 2017).  

Nasri et al. (2013) concluded that incorporation of protein hydrolysates prepared 

from Goby fish (Zosterisessor ophiocephalus) could delay lipid oxidation in turkey 
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meat sausage. Kim et al. (2013) assessed the antioxidant efficacy of 10 leafy edible 

plants and investigated the effects of butterbur and broccoli extracts on lipid oxidation 

in ground beef patties, the beef patties formulated with the selected plant extracts 

showed significantly better color stability (p ≤ 0.05) than those without antioxidants. 

Mansour and Khalil (2000) proved that freeze-dried extracts from ginger rhizomes and 

fenugreek seeds were more effective than potato peel extract in controlling lipid 

oxidation and color changes during cold storage of beef patties. 

Egg proteins are nutritionally complete with a good balance of the essential amino 

acids needed for building and repairing the cells in muscles and other body tissues. 

Nowadays, many researchers have uncovered the hidden biological functions of 

peptides hidden in egg proteins such as anti-hypertensive (Miguel and Aleixandre, 

2006), anticancer (Ibrahim et al., 2009; Moon et al., 2013) or exaggerated antimicrobial 

activities (Ibrahim, Sugimoto et al., 2000). EW is also known as a desirable ingredient 

in foods such as bakery products, meringues and meat products in which it is mainly 

used for its excellent gelling and foaming properties.  

In this study, we assessed the antioxidant efficacy of hydrolysates of EW proteins by 

using four different-sized distributions of EW hydrolysates, and evaluated their potential 

as natural antioxidants for meat preservation, especially for  preventing or reducing 

color changes in pork meat stored at 4°C. 

3.2 Materials and Methods 

3.2.1 ORAC-FL assay.  

The ORAC-FL assay was based on the method proposed by Ou et al.., (2001) and 

was modified as previously described by Dávalos et al., (2004). Samples prepared in 75 
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mM phosphate buffer (pH 7.4) were mixed with 50 µL of fluorescein (200 nM) and 

incubated at 37°C for 10 min. Trolox (2-16 µM) was used as the standard. Then 50 µL 

of 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH) (80 mM) as an oxygen 

radical generator was added to each well using an automated dispenser and the plate 

was automatically shaken for 5 s. Fluorescence was recorded using a fluorometric 

microplate reader (Infinite M200, TECAN, Switzerland) at 1 min interval for 60 min at 

excitation and emission wavelengths of 485 and 538 nm, respectively.  

All reaction mixtures were prepared in triplicate, and at least three independent 

runs were performed for each sample. Measurements of fluorescence were normalized 

to the curve of the blank (no antioxidant). The net area under curve (AUC) of the 

sample was calculated by subtracting the AUC of the blank. ORAC-FL values were 

expressed as Trolox equivalents by using the standard curve calculated for each assay. 

Final ORAC-FL values were expressed as micromoles of Trolox equivalent per gram of 

protein for each hEW. 

3.2.2 Treatment of pork slices by hydrolyzed egg white.  

Approximately 8 cm×6 cm of lean pork (leg meat) slices with a thickness of 4 mm 

were supplied by a local butcher shop (Kyoto, Japan), 24 h postmortem. Fresh meat pH 

was determined as described by Pigott et al., (2000). Each piece of pork was weighed, 

then soaked individually in the same weight of EW hydrolysate solution (protein 

concentration of 10%, w/w) in a zipper freezer bag. It was then stored in a fridge at 4°C 

for 24h before further analysis. 

3.2.3 Color measurement.  

Objective measurements of color were performed using a CR 400 colorimeter 

(Minolta, Osaka, Japan). Each slice of meat was cut and the color of the slices was 
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measured three times for each point. A portable colorimeter was used to measure meat 

color, with the settings: pulsed xenon arc lamp, 0 viewing angle geometry and aperture 

size 8 mm, in the CIELAB space (L: lightness; a: redness; b: yellowness,). Before each 

series of measurements, the instrument was calibrated using the reference white ceramic 

tile. 

Total color change and % color change were calculated according to the following 

formula (Ünal et al., 2014):   

                                 

3.2.4 Relative proportions of myoglobin redox forms.  

Pigments in pork samples were extracted according to the method of Lee et al., 

(1999) with some modifications (Viriyarattanasak et al., 2011). The sample (2 g) was 

first minced in a pre-cooled mortar and then placed into a 50-ml polypropylene 

centrifuge tube, and 20 ml ice-cold phosphate buffer (pH 6.8, 40 mM, 4°C) was added. 

The mixture was homogenized with a mechanical homogenizer (IKA T18 basic, 

Germany) at Dial 5 (15,000 rpm) for 20 s. The homogenized sample was centrifuged at 

6,000 g for 30 min at 4 °C (CFRXⅡ, Hitachi, Japan). In order to avoid any turbidity of 

the extracts, the supernatant was filtered with a filter paper (Number 2, Advantec, Toyo, 

Japan). The absorption at 525, 545, 565 and 572 nm of Mb derivatives was measured 

using a UV-vis spectrophotometer (U-2001, Hitachi, Japan). 

The relative concentrations of metmyoglobin were calculated using the following 

equations. Measurements were performed in triplicate. 

% metmyoglobin =(－2.514R1 + 0.777R2 + 0.800R3 + 1.098) ×100 

While R1 = A572 nm /A525 nm, R2 = A565 nm /A525 nm, R3 = A545 nm /A525 nm.  
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3.2.5 Statistical analysis.  

All experiments were carried out in triplicates. The data were subjected to 

multifactor analysis of variance (ANOVA), followed by the Least Significant Difference 

(LSD) test to determine the significant difference between samples at p < 0.05, level 

using the software SPSS V.16. 

3.3 Results and Discussion 

3.3.1 Antioxidant activity (ORAC value) of egg white hydrolysates.  

ORAC value was expressed as micromoles of Trolox equivalent per gram of 

protein. Egg proteins are a source of biologically active peptides. In the current study, 

after the breakdown of protein, EW hydrolysates except for PM showed relatively 

higher ORAC values compared to NEw, suggesting that, hydrolysis using certain 

enzymes may be one effective way for EW protein to obtain antioxidative capacity. 

Moreover, as shown in Fig.3-1, PNY and Peptide S exhibited relatively higher ORAC 

values compared with the others. Combined with the results shown by SDS-PAGE, as 

well as DH data, Peptide S was the most hydrolyzed among all the samples. Chen et al. 

(2012) investigated antioxidative activities of EW protein hydrolysate prepared with 

trypsin at different degrees of hydrolysis, and found that the fractions with molecular 

weight lower than 3 kDa by ultrafiltration of the hydrolysate (DH of 12.4%) exhibited 

the highest antioxidant capacity. It was also found thatEW hydrolysates with different 

DH have different bioactive and functional properties;therefore, EW hydrolysates 

created by controlled hydrolysis may be useful ingredients in food and nutraceuticals, 

with potential bioactive properties. 
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3.3.2 Profiles of color characteristics of different samples. 

Meat color is one of the most important indexes defining the quality of meat 

(Lindahl et al., 2001). The measurement of color is usually presented as the resultant of 

three different values – L (lightness), a (redness), b (yellowness). Changes in L, a and b 

of pork meat slices are shown in Table 3-1. Photos of meat before and after the soak in 

different solutions are shown in Fig.3-2a and Fig. 3-2b, respectively.  

Several researchers have already studied the effect of natural anti-oxidative 

extracted compounds on ground beef or pork patties. For example, Park et al.(2010) 

found that the addition of garlic extracts to pork patties decreased the pH, redness, and 

thiobarbituric acid reactive substances (TBARS) values. 

In Japan, and even worldwide, grilled pork meat is a quite popular meal, so in the 

current study, we chose to test pork. Pork meat slices were soaked in a solution which 

was with or without EW hydrolysates. After soaking in the solution for 24 h, samples 

were compared with the control (soaked in water), and samples soaked with NEw or 

hEWs showed lower ΔE. The lowest ΔE was observed in samples soaked in Peptide S 

solution (see in Table 3-1), suggesting that Peptide S has the greatest potential to 

maintain color stability. Samples soaked in water (control sample) and NEw samples 

showed the lowest redness.  

The color of meat products is influenced by the percentage of metmyoglobin in 

muscle tissue. The myoglobin changes into oxymyoglobin (light pink color), which 

could result in brighter red meat, and then oxymyoglobin is oxidized into metmyoglobin 

during storage (Zhang et al., 2016). As myoglobin is a water-soluble protein in meat, 

when meat was soaked in the control (only with water), the loss of myoglobin led to the 

most color change (△E=10.6). A significant increase in L values indicated the light 
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color reduction of meat shown in Table 3-1. Combined with results shown in Fig. 2-2 

and Fig. 2-3, peptide S was found to possess a higher ORAC value and a quite good 

solubility; the small size of peptide could be absorbed easily into the center of meat 

fiber, protecting the remaining myoglobin from oxidation.  

3.3.3 Relative proportions of metmyoglobin of pork soaked in different EW 

hydrolysate solutions. 

Krzywicki's equations have been widely used for estimating the relative 

proportions of myoglobin redox forms in aqueous solution (Viriyarattanasak et al., 

2011). Relative proportions of metmyoglobin of pork soaked in different EW 

hydrolysate solutions are shown in Table 3-2. Myoglobin has three natural colors 

(deoxymyoglobin, oxymyoglobin and metmyoglobin). Depending on its exposure to 

oxygen and the chemical state of the iron, metmyoglobin is a compound formed from 

myoglobin by oxidation of the ferrous to the ferric state with essentially ionic bonds. It 

was obvious to observe that after 24h, the relative proportion of metmyoglobin 

increased, especially in the control sample that was soaked in only water, demonstrating 

that oxidation of myoglobin still occurred even after being soaked in solutions. Results 

showed that the lowest metmyoglobin proportion was found in the pork treated by the 

small EW peptide, i.e. Peptide S, which showed a relatively higher ORAC value than 

the other samples. Regardless of the presence of ovotransferrin shown by SDS-PAGE, 

PM and NEw showed a similar effect on the proportion of metmyoglobin in the pork. In 

general, the result of metmyoglobin measurements are is in good agreement with the 

ORAC values shown in Fig.3-1, suggesting that EW hydrolysates can potentially be 

used as preservatives in meat products. 
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3.4 Conclusion 

This work aimed to study the potential of egg white hydrolysate as a natural 

antioxidant for the preservation of pork meat slices. Different egg white hydrolysates 

samples were prepared, and different characteristics such as solubility, molecular size 

and ORAC values were evaluated. Meat slices were soaked in egg white hydrolysates 

stored at 4°C for 24h. Small peptide - Peptide S (with molecular weight lower than 10 

kDa) showed the best ORAC value (389 µmol TE/g) and excellent water solubility, and 

could inhibit the color change in treated pork slices. Moreover, it was demonstrated that 

egg white hydrolysates were generally better than the control (water) in improving color 

stability during storage time. Therefore, it can be concluded that egg white hydrolysates 

can be used as a natural antioxidant in meat. This study may have potential implications 

for developing enhanced meat products, since egg white proteins are the nutritionally 

complete with a good balance of essential amino acids. 
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Fig.3-1 ORAC values of different samples. Means within column with no common 

superscript differ significantly (p < 0.05). 
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Fig.3-2. Photos of meat before soak (a) and after soak (b) in different solutions. 
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Table 3-1 Profiles of color characteristics of pork slices treated by different samples. 

 

Sample PNY T PM Control NEw          Peptide S 

Original Meat 

L 35.92 ± 0.18 

a 11.27 ± 0.45 

b 6.86 ± 0.33 

E 38.27  

After Soak 

L 38.33±0.15 38.83±0.81 39.33±0.88 45.76±2.23  38.04±0.06  36.74±0.31  

a 9.33± 0.58 8.97± 0.77 8.96±0.62 7.52± 1.37 7.84± 0.05 9.30 ±0.44 

b 4.31± 0.08 5.24±1.20 5.25± 0.32 5.97±0.54 4.72± 0.37 5.05± 0.38 

△E 3.46  4.05  4.42  10.57  4.56  2.80  

Means ± SD are shown (n=3). Control: meat soaked in only water.  
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Table 3-2 Relative proportions of metmyoglobin in meat slices soaked in different egg 

white hydrolysates. 

Sample 
Original 

Meat 
PNY T PM Control NEw       Peptide S 

MetMb 

(%) 

30.49±0.83

d
 

33.24±0.53
c
  34.34±0.25

b
 35.49±1.25

a
  37.40±0.50

a
  35.92±0.84

a
  32.47±0.78

c
 

Means ± SD are shown (n=3). Means within column with no common superscript 

differ significantly (p < 0.05). 
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Chapter IV    

Effect of egg white hydrolysates on the shrinkage, cooking loss and 

texture of pork meat slices 

4.1 Introduction 

Color and texture are among the key factors that influence consumers’ acceptance 

of food products (Costell, 2010). Meat shrinkage and cooking loss during cooking has 

often been thought by consumers to be an indicator of poor meat quality (Barbera and 

Tassone, 2006). Non-meat ingredients especially vegetable ingredients, are often 

introduced into meat processing for economic reasons. However, the majority of studies 

focused on the application of non-meat ingredients to meat emulsion products, such as 

hams and sausages. Until now, non-meat ingredients used in meat emulsion products 

have included milk products (non-fat dry milk, sodium caseinate, milk coprecipitates, 

whey and whey products), soy proteins and isolated soy protein, oilseeds (sunflower 

and others), and cereal products (carbohydrate-rich products, wheat flour, pea, chickpea 

flours and textured navy bean protein concentrate) (Mittal and Usborne, 1985; Correia 

and Mittal, 2000).  

    Pork meat is mainly composed of water, protein, and fat. In meat emulsion 

products, foreign proteins like soybean proteins can also act as emulsifying agents, due 

to their amphiphilic structure. The addition of foreign protein thus results in a more 

homogeneous texture and more stable products, and can also sometimes reduce product 

cost. However, very few researchers have focused on the application of non-meat 

ingredients on non-emulsified meat products. Grilled pork meat is one of the most 
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popular foods in Japan,as well as worldwide, high cooking losses and shrinkage have 

reduced consumer satisfaction.  

In the last part of our research, described in Chapter III, EW proteins were partially 

hydrolyzed, resulting in a smaller molecular size. Results showed that EW after 

hydrolysis had a better emulsifying property than nEW. In this chapter, the potential of 

using partially hydrolyzed EW as a natural meat additive to decrease cooking loss and 

meat shrinkage will be studied.  

4.2 Materials and Methods 

4.2.1 Treatment of pork slices with egg white hydrolysates.  

Approximately 8 cm × 6 cm of lean pork (leg meat) slices with thickness of 4 mm 

were supplied by a local butcher shop (Kyoto, Japan). Visible fats and connective 

tissues were trimmed. Fresh meat pH was determined as described by (Pigott et al., 

2000) (data not shown). Each piece of pork slice was weighed (W0), the shape of each 

slice was copied using a printer (DCP-9020CDW, Brother, Japan), paper was cut 

carefully by following the outline of each copied meat, and the cut paper was weighed 

(W0
*
). Then meat slices were soaked individually in the same weight of hEW solution 

(protein concentration of 10%, w/v) in a zipper freezer bag, was and stored at 4°C for 

24 h before further analysis (Pigott et al., 2000).  

4.2.2 Absorption rate, shrinkage and water loss rate of pork slices soaked in 

different egg white hydrolysate solutions.  

Treated meat slices were slightly rinsed with distilled water and then placed on a 

paper towel for 1 min to remove extra moisture. Each pork slice was weighed 

individually (W1), the shape of each slice was copied and cut as mentioned before, and 
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the cut paper of meat after soaking in hEW was weighed (W1
*
). Meat was cooked using 

a hotplate (EA-XC45-HW, Zojirushi, Japan). The highest temperature of the hotplate 

(about 250°C) was used. Each side of meat was roasted at the same location on the 

hotplate for 30 s. Each cooked meat slice was weighed (W2), the shape of each cooked 

meat slice was copied and cut as mentioned before, and the cut paper of cooked meat 

was weighed (W2
*
). Absorption rate, shrinkage and water loss rate were calculated as 

follows: 

Absorption rate (%) = (W1 - W0) / W0×100  

Cooking loss (%) = (W0 - W2) / W0× 100  

Shrinkage (%) = (W0
* 
- W2

*
) / W0

*
 ×100  

4.2.3 Water content of cooked pork slices treated by hydrolyzed egg white. 

Cooked meat slice was cut down to about 1×1cm in cubed pieces, then the meat 

was dried at 120°C for 24h using a drying oven (DS600, Yamato Scientific, Japan). 

Water content of cooked meat was calculated as  

Water content = (Initial weight - final drying weight) / Initial weight × 100. 

4.2.4 Texture evaluation.  

Tests were performed with a Texo-Graph (Japan Food R&D Institute, Japan). A 

compression test with a cylindrical plunger of 0.5 cm
2
 was performed to determine 

textural characteristics of meat slices after cooking. The probe extruded on the surface 

of cooked meat at a rate of 0.8 mm/s and the force exerted on the probe was 

automatically recorded as a load deformation curve which corresponded to textural 

characteristics of hardness (and toughness) and elasticity. Measurements were 

developed four times for each sample. 

4.2.5 Micro structure.  
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Cooked meat was cut down to about 1×1cm, then freeze-dried overnight (FreeZone 

Plus 12 Liter Cascade Console Freeze Dry System, Labconco, Japan) . Thin silk of the 

dried specimens was mounted on metal stubs with double-stick tape, coated with gold 

(JEC- 3000 FC Auto Fine Coater, JOEL, Japan) and observed under a scanning electron 

micro-scope (JSM-7100, JOEL, Japan). Images were calibrated to determine 

magnification (Zuckerman et al., 2013). 

4.2.6 Statistical analysis.  

All experiments were carried out in triplicates. The data were subjected to 

multifactor analysis of variance (ANOVA), followed by the Least Significant Difference 

(LSD) test to determine the significant difference between samples at p < 0.05 level 

using the software SPSS V.16. 

4.3 Results and Discussion 

4.3.1 Cooking loss and shrinkage. 

Data for hEWs in meat model system are shown in Table 4-1. Pork meat slices 

with a thickness of 4 mm and a uniform size were soaked in hEW or NEw solutions. 

The weight change percentage of each meat slice soaked in each corresponding 

dispersion was expressed as absorption rate (%).Table 4-1 showed that absorption rates 

of all hEW as well as NEw samples were significantly higher than that of the control 

(meat slice soaked in only water). The existence of proteins exposed at the interface 

contributed to the penetration of liquid into the inside of the meat. Peptide S showed the 

same absorption rate with all three hEW samples (PNY, T and PM), which suggests that 

the absorption rate is not associated with the particle size of proteins; pH may be an 

additional consideration.   
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In meat proteins, the majority of water is held in myofibrils. Water content within 

the meat myofibrils in the narrow channels between the filaments changes as meat 

shrinks within the tissue matrix, resulting in cooking loss with heating. (Huff-Lonergan 

and Lonergan, 2005). Cooking loss was calculated as the percent weight difference 

between fresh and cooked meat samples (Chiavaro et al., 2009). Both nuclear magnetic 

resonance (NMR) and cooking studies have shown that the water lost during cooking of 

minced hamburger muscle is similar to that of intact meat muscle (Bertram et al., 2004; 

Tornberg, 2005). Meat cooking shrinkage is the difference between the raw and cooked 

areas of the meat sample, expressed as a percentage of the raw area (Barbera and 

Tassone, 2006). In this study, meat shrinkage was measured by archiving the image of 

raw and cooked meat samples. Results showed that when a pork meat slice was 

immersed in only water (control), about 38.0% of weight was lost after cooking and the 

shrinkage rate was about 22.7%. Similarly, Tornberg (2005) reported a considerable 

shrinkage of meat: 7-19% on area basis. Furthermore, it is clear from the results that 

cooking loss as well as shrinkage rate decreased when raw meat was immersed in the 

solution containing hEW (PNY, T, PM and Peptide S) and NEw. The meat treated by 

sample T possessed an excellent WHC, resulting in the least shrinkage (3.24%).  

The ability of an added substance to increase meat batter pH can allow muscle 

proteins to be much more successful in forming a stable emulsion (Homco-Ryan et al., 

2003). The water content of cooked meat is related to the juiciness of meat, which is 

also an important sensory factor. Results showed that there were no significant 

differences between meat treated by hEWs (PNY, T, PM and Peptide S) and NEw, but a 

relatively lower water content was observed in the cooked meat treated with only water 

(control). 
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4.3.2 Texture. 

 Consumer satisfaction has been influenced by meat’s textural properties (Silva et 

al., 2015). Changes in texture caused by heating can be affected by changes in the 

soluble proteins, myofibrillar proteins, and connective tissue of meat. Heating produces 

a softening of connective tissue and a toughening of meat fibers (Bouton and Harris, 

1972). In this study, three textural parameters of cooked meat were evaluated (hardness, 

elasticity and toughness). As shown in Fig.4-1, although relative higher water content 

was observed in meat immersed in Peptide S and PM solution compared to the control, 

there was no significant difference observed in the hardness of these three kinds of meat. 

The greatest elasticity and toughness of cooked meat was observed in the meat soaked 

in water (control). As myoglobin is water-soluble in meat, when meat was soaked in 

only water, the loss of myoglobin resulted in the greatest degree of hardness, elasticity 

and toughness. Conversely, in the meat treated in solution with hEW (PNY, T, PM and 

Peptide S) and NEw, small-sized proteins with penetrated into the connective tissue 

matrix of meat muscle tissues. These proteins showed WHC, OBC, and emulsifying 

capacities, acted as a binder of water and fat components in the meat, and affected 

textures in the final cooked meat.  

4.3.3 Micro structure.  

In this study, a scanning electron microscopy (SEM) technique was utilized to 

investigate the difference between the microstructure of intramuscular connective tissue 

in pork meat muscles. As shown in Fig.4-2, honeycomb structures of the endomysium 

were clearly observed within muscle fiber bundles in all the meat. Relatively larger 

holes and a grainy appearance of endomysium sheaths were distinctive in the meat 

treated by T, while collagen fibril disruption and the grainy appearance in the 
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endomysium sheaths were not prevalent in the sample treated by Peptide S. Despite the 

differences observed among these raw pork meat slices, after cooking, the honeycomb 

structures in all the meat samples became smaller as shrinkage of their connective tissue 

networks and muscle fibers occurred.  

4.4 Conclusion. 

In this study, physical characteristic including solubility, water holding capacity 

and oil binding capacity were evaluated for different hEWs. Furthermore, shrinkage and 

cooking loss of pork meat slices soaked in different hEWs were compared. Results 

showed that, cooking loss and shrinkage rate decreased when pork slices were soaked in 

solution containing hEWs (PNY, T, PM and Peptide S) and NEw, compared with the 

slice soaked in only water. The meat treated by sample T possessed an excellent WHC, 

resulting in the least shrinkage rate (3.2%) compared with the control (shrinkage rate of 

22.7%). Treatment with hEWs and NEw contributed to the decrease of elasticity and 

toughness of cooked meat. Therefore, it is concluded that treatment of pork meat slices 

in egg white hydrolysates is beneficial for decreasing shrinkage and weight loss during 

heating.   
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Table 4-1 Absorption rate (%), cooking loss (%), shrinkage (%) and water content of 

meat slices soaked in different egg white hydrolysates.  

 Absorption rate(%) Cooking loss(%) Shrinkage(%) Water content(%) 

PNY 

T 

PM 

NEw 

Peptide S 

Control 

14.88±2.41
ab

 

19.16±2.41
a
 

16.33±1.07
ab

 

11.96±1.38
b
 

14.92±3.38
ab

 

1.47±0.27
c
 

24.43±0.95
bc

 

22.87±1.74
c
 

24.37±1.95
bc

 

27.21±2.29
b
 

26.75±3.28
b
 

38.02±2.02
a
 

6.90±1.38
c
 

3.24±0.61
d
 

4.67±1.93
cd

 

9.07±0.18
b
 

6.14±1.99
c
 

22.74±1.16
a
 

68.22±0.48
a
 

68.87±1.61
a
 

66.40±0.55
a
 

67.33±0.96
a
 

66.42±0.76
a
 

62.40±0.47
b
 

Means±SD are shown (n=3). In each tested parameter, different superscript letters 

indicate significant differences between means in the same column (p < 0.05). 
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Fig. 4-1 Texture evaluation of meat slices soaked in different egg white hydrolysates. 
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 Fig.4-2 Microstructure of meat slices soaked in different egg white hydrolysates. 
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Chapter V 

 Summary and conclusion 

In recent years, various bioactivities have been unlocked in low molecular weight 

peptides obtained by hydrolysis of protein. Moreover, it is known that hydrolysis of a 

protein also results in a change its physical function due to change in its 

three-dimensional structure. These functional changes can include solubility, gelling 

property, foaming property, and emulsify properties. Hence, the functional modification 

of food proteins using proteolytic enzymes has drawn attention as a way to increase the 

added value of foods. Native egg white (NEw) has heat gelling property and foaming 

property. However, egg white (EW) protein loses its heat gelling property by partial 

hydrolysis. The protein is denatured by heating and an amphiphilic structure is formed, 

so that emulsification characteristics are obtained. 

Protein-type water retention agents such as milk protein, EW, soybean protein, and  

polymerized phosphate have been widely used for maintaining juicy taste and quality 

in processed meat. When a protein type water retention agent is applied, gelation 

during heating causes meat to have a hard texture. When a polymerized phosphate salt 

is applied, melting of myofibrillar protein causes the meat to lose its original texture. 

So, it is difficult to keep a good mouthfeel while avoiding the loss of juiciness. In this 

study, the effect of partially hEW on meat quality was examined.  

First, Chapter 1 describes the change in EW properties caused by partial hydrolysis. 

Three kinds of proteases (Protin NY 100
®
, Thermoase PC 10F

®
, Protease M

®
) were 

used at a concentration of 0.4% for partial hydrolysis of EW. The egg white 

hydrolysates (hEW) obtained using these three enzymes were named PNY, T, and PM, 
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respectively. Examination of the molecular weight distribution of hEWs by SDS-PAGE 

showed that ovotransferrin (78 KDa) disappeared completely, but remarkably remained 

in a protein gel having a molecular weight of ovalbumin (45 KDa) or less, namely a 

decomposition product. Based on the results of measuring the emulsifying property of 

hEWs by the turbidity method and measurement of the emulsified particle size, it was 

shown that hEW-T has an emulsifying activity comparable to that of egg yolk. All 

hEWs showed higher emulsifiability than NEw and low molecular weight EW peptide - 

Peptide S. In addition, it was shown by the ANS method that the surface hydrophobicity 

of hEW - T was the highest. Furthermore, the obtained hEW exhibited a higher ORAC 

value than that of NEw. 

Next, in Chapter 2, the effect of hEWs on the stability of meat color was examined. 

When fresh meat is exposed to air, it produces bright red oxymyoglobin (oxygenation), 

and if it is exposed to air for a long time, the bivalent iron of heme is oxidized to 

trivalent iron, resulting in brown metmyoglobin. In this study, sliced fillets of pork (4 to 

8 mm of thinkness) were soaked in each hEW (PNY, T and PM) and a peptide S 

solution with a protein concentration of 10% (w / w). Meat soaked in the same manner 

using NEw was as a positive control and water alone was used as a negative control. 

After storage in a refrigerator for 24 hours, the color of each meat slice before 

immersion, after dipping and after heating was measured with a colorimeter, and the 

effect of hEW on the change in coloration was analyzed. 

Results showed that, when immersed for 24 hours at 4 °C, the meat slice treated 

with peptide S with the highest ORAC value (389 μmol TE / g) showed the least color 

change (ΔE=2.8). Furthermore, it was shown that each meat slice soaked in hEW 

solution was superior to the negative control (water only) considering the effect of 
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suppressing change in color (ΔE). According to measurement of metmyoglobin, meat 

treated with Peptide S showed the lowest value. On the other hand, there was no 

significant difference between the metmyoglobin volume in meat treated with PM and 

NEw. 

Finally, in Chapter 3, the effect of hEW on grilled meat was investigated. In the 

grilled meat experiment, each immersed meat was baked uniformly on both sides on a 

hotplate, and the amount of expressible moisture and the area of the meat were 

measured. As a result, it was shown that cooking loss (%) and shrinkage rate (%) 

decreased when the meat was dipped in a solution containing hEWs or NEw. Meat 

subjected to hEW-T treatment resulted in the minimum shrinkage (3.2%) compared 

with control meat (shrinkage rate of 22.7%). Furthermore, using a scanning electron 

microscope, large pores and granular sheath were observed in meat treated with hEW-T 

compared to control meat. In addition, immersion treatment with hEW and NEw 

contributed to a decrease in elasticity and toughness of the cooked meat. Therefore, 

treatment with hEW was found to be helpful in decreasing the cooking loss and 

shrinkage of grilled pork slices. 

From the above, it can be concluded that when EW protein is partially hydrolyzed 

with a proteolytic enzyme, the gelation property is lost and; an emulsifiability 

comparable to egg yolk can be obtained. The obtained hEW also possessed excellent 

water holding capacity and antioxidative capacity (ORAC value). hEW is a promising 

natural additive for suppressing color change in meat during storage period, and also for 

decreasing shrinkage and juice loss during cooking.  
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Appendix I     

Summary in Japanese 

卵白部分加水分解物の特徵とその肉への応用 – 博士論文和文要旨 

      論                             

                                      

                             す ことも知ら   

  こ  う       酵素を用  食品       改   食品    用

途拡大 役 つ手段  つとし 注目      卵 (NEw)       と   

を す   卵    を      し    す こと       を失  酵

素失 時             し 両親媒       め  特 を獲得す   

     用 食     品          卵    大   と    

               用 ら                 時  

           う 食                        

                   し う     と食 を両  せ   と

 う        こ              を無 し 卵        

   改 効果を検討し   

 二   卵              卵                 

     (Protin NY100® Thermoase PC10F® Protease M®:        社製品)を

用   卵  量 対す 酵素濃度を 0.4%とし  酵素を 50°C  添 し   後 

各酵素 至適温度と至適 pH   30  間    を行  90°C      8  間  

    失  せ  こ ら 3つ 酵素を用  得ら  卵      を      

PNY T     PM とし  こ ら        量 布を SDS-PAGE      
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果           (78KDa)     失し            (45KDa)

と ゾ   （14KDa  間                          

      卵             と     を 度  測 し  果と

  粒径 測  果            T  卵黄     匹敵す   力を 

す ことを  し             も  卵       卵     

-S (     ®:       社製品)  も                  

    (ANS  )  卵      T                   こと

を し   ら  得ら        良好    と 油 を し      素

  去  ORAC (Oxygen Radical Absorption Capacity)値も強 発現し   

     卵          色へ 効果  新     空気 触  と( 

素 )    色          を      ら  長時間 空気  らし  

 と ヘ  2     3          色         を       

   豚 ヒ  を薄切 (4~8 mm) 切     濃度とし  10%(w / w) 揃え  

各  卵      (PNY T     PM)     S   個別 4°C  24 時間

浸漬し     陽 対照   NEwを 陰 対照    みを用   同  ヒ  

を浸漬し  色 色   浸漬  浸漬後       色を測 し 卵      

    色  抑制効果  無を 析し   果とし  4°C  24 時間浸漬し 場  

抗  力を す ORAC値 (389 μ mol TE / g)   も       S   し ヒ  

  も良好  色   (ΔE= 2.8)抑制効果を し   ら  各卵         

浸漬    色   (ΔE)抑制効果   陰 対照(  み)       こと    

             量 測        卵      S      も 

値を し   方 PM     NEw                   量 大 

 か     

 四   卵         焼 へ 改 効果   焼      薄切 (4~8 
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mm)し 豚ヒ  を    濃度とし 10%(w/w) 揃え 各  卵      (PNY 

T     PM)      S    個別 4°C  24 時間浸漬し     陽 対照 

 NEw を 陰 対照    みを用   同  ヒ  を浸漬し    後 各浸漬

 を         両 を同 条件 均  焼成し 焼 から 遊離  量   

 積を測 し     果  を卵            NEw を含む   浸漬す

 と    損失(%)   収縮率(%)      す こと      特 卵   

     T    し    同    浸漬し         (収縮率 22.7%)

と比較し   小 収縮率(3.2%) を し   ら  走査型電  微鏡を用   卵

         T    し           と比較し     大    

   粒      観察       卵        と NEw    浸漬  

          力 と        し  し     卵        

       豚        損失    収縮率   を改 す   役 つこ

と 認めら     

   ことから 卵    を     酵素         し     

を 失 せ      せ と            し 卵黄 匹敵す    

 得ら  こと  か   こ  う し 得ら  卵             

  と 油    抗  力(ORAC値)も す こと  認    卵       

        酵素  と                   改 （   

  失    獲得    新     とし  食  存中  色退色抑制効果 食

   中 収縮     中  汁損失抑制効果を獲得す ことを  し   

 

 



82 
 

Appendix II       

Publications 

1 )  Wang Y, Horimoto Y, Nau F, Hatta H. Improving Emulsifying Properties of Egg 

White Protein by Partial Hydrolysis Combined with Heat Treatment. Advance 

Journal of Food Science and Technology. 2018, 14(2):50-55. 

2 )  Wang Y, Kimura T, Nohara T, Shen Jf, Hatta H. Proposal of a Micro Analysis for 

Singlet Oxygen Absorption Capacity using a Disposable 96-Well Microplate, 

Advance Journal of Food Science and Technology. 2018,14(4):126-130. 

3 )  Wang Y, Shen Jf, Hatta H. Evaluation of Antioxidant Activity of Egg White 

Hydrolysates and Their Application on Color Stability of Pork Meat Slices. 

Advance Journal of Food Science and Technology. 2018,14(5):148-154. 

4 )  Wang Y, Enomoto H, Shen Jf, Hatta H. Effect of egg white hydrolysates on the 

shrinkage, cooking loss and texture of pork meat slices. Advance Journal of Food 

Science and Technology. 2018,14(6): 186-193. 

5 )  八田 一，王 玉。食品加工における酵素利用の最前線。 冷凍。2019 年 1

月号第 94 巻第 1095 号：19-24。 

 

 

 

 



83 
 

Acknowledgements 

It is with great pleasure that I write this section of my thesis. In my heart and mind, 

it is the most important part of this thesis. I get to say “thank you” to all the wonderful 

people who have made it possible for me to go through this program. 

I am deeply indebted to my supervisor, Professor Hajime Hatta. The first time we 

met in INRA-France, he explained to me about egg knowledge on five pages fully 

covered writing, which I still have now in my apartment in Shanghai. He opened a door 

for me to a new world that I would like to discover. I am particularly grateful for the 

advice, guidance and inspiration he offered throughout the course of this work. 

I am also very grateful to Dr. Nagayama Reiko, Dr. Narita Hiroshi, Dr. Matsumoto 

Shinya, Dr. Kawamura Yukio, and all the teachers in the faculty of Food and Nutrition. 

They never made me feel nervous for expressing myself in my poor Japanese at the 

beginning; you always encouraged and pushed me throughout. Special thanks to 

Dr.Yasumi Horimoto from Guelph University in Canada, who offered valued 

suggestions on my manuscript of thesis.  

I also would like to thank everyone studying in the laboratory of Professor Hajime 

Hatta, for their patience with my poor Japanese. Special thanks to Mayuko Yamashita, 

Nanase Kubo, and Reina Fujishin who always acted as my assistant and interpreter, for 

sharing ideas and best practice as well as keeping me motivated throughout my 

research.  

I would like to thank Professor Yasuki Matsumura of Kyoto University for his 

instructions in the determination of particle size distributions of egg white hydrolysates. 

I also would like to thank Dr. Yosie Ueno of Kyoto Prefectural Technology Center for 



84 
 

Small and Medium Enterprises for his help in the observation of microstructures in meat 

using scanning electron microscopy.  

Lastly, I would like to thank China Jilin Jinyi company, who gave me the 

opportunity to complete this degree under its financial support. Especial thanks to Mr. 

Shen for his valuable comments throughout these years. 

I would like to thank my husband for his endless encouragement and support in 

keeping me focused on my research and helping me manage my time, and especially, 

for bearing with my bad temper when I was frustrated and for always waiting for me in 

Shanghai. My deepest gratitude is to my parents, for their encouragement in obtaining 

my PhD degree. In my most difficult moments, the words from them always served to 

uplift my spirit, and gave me a sense of purpose. 

 


